Multilingual AI translation:

In vivo gene editing

“In vivo gene editing in post-mitotic neurons of the adult brain may be a useful strategy for treating neurological diseases. Here, we develop CRISPR–Cas9 nanocomplexes and show they were effective in the adult mouse brain, with minimal off-target effects. Using this system to target Bace1 suppressed amyloid beta (Aβ)-associated pathologies and cognitive deficits in two mouse models of Alzheimer’s disease. These results broaden the potential application of CRISPR–Cas9 systems to neurodegenerative diseases.”

Park, H., Oh, J., Shim, G., Cho, B., Chang, Y., Kim, S., … Kim, J.. (2019). In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nature Neuroscience

Plain numerical DOI: 10.1038/s41593-019-0352-0
DOI URL
directSciHub download


Further References

Gillmore, J. D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M. L., … Lebwohl, D.. (2021). CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. New England Journal of Medicine

Plain numerical DOI: 10.1056/nejmoa2107454
DOI URL
directSciHub download

Mills, E. M., Barlow, V. L., Luk, L. Y. P., & Tsai, Y. H.. (2020). Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications. Cell Biology and Toxicology

Plain numerical DOI: 10.1007/s10565-019-09488-2
DOI URL
directSciHub download

Park, H., Oh, J., Shim, G., Cho, B., Chang, Y., Kim, S., … Kim, J.. (2019). In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nature Neuroscience

Plain numerical DOI: 10.1038/s41593-019-0352-0
DOI URL
directSciHub download

Jordan, B.. (2021). In vivo gene editing for gene therapy. Medecine/Sciences

Plain numerical DOI: 10.1051/medsci/2021140
DOI URL
directSciHub download

Yip, B. H.. (2020). Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules

Plain numerical DOI: 10.3390/biom10060839
DOI URL
directSciHub download

Büning, H., & Schambach, A.. (2021). A first step toward in vivo gene editing in patients. Nature Medicine

Plain numerical DOI: 10.1038/s41591-021-01476-6
DOI URL
directSciHub download

Latella, M. C., Di Salvo, M. T., Cocchiarella, F., Benati, D., Grisendi, G., Comitato, A., … Recchia, A.. (2016). In vivo Editing of the Human Mutant Rhodopsin Gene by Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina. Molecular Therapy – Nucleic Acids

Plain numerical DOI: 10.1038/mtna.2016.92
DOI URL
directSciHub download

Li, F., Wing, K., Wang, J. H., Luu, C. D., Bender, J. A., Chen, J., … Hewitt, A. W.. (2020). Comparison of CRISPR/Cas Endonucleases for in vivo Retinal Gene Editing. Frontiers in Cellular Neuroscience

Plain numerical DOI: 10.3389/fncel.2020.570917
DOI URL
directSciHub download

Lee, J., Kang, Y. K., Oh, E., Jeong, J., Im, S. H., Kim, D. K., … Chung, H. J.. (2022). Nano-assembly of a Chemically Tailored Cas9 Ribonucleoprotein for in Vivo Gene Editing and Cancer Immunotherapy. Chemistry of Materials

Plain numerical DOI: 10.1021/acs.chemmater.1c02844
DOI URL
directSciHub download

Leave a Reply

Your email address will not be published. Required fields are marked *

81 − = 72