Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems (Review, 2010)

In this review we provide an analysis of recent literature reports on the synthesis and applications of stimuli-responsive polymeric and hybrid nanostructured particles in a range of sizes from nanometers to a few micrometers: nano- and microgels, core–shell structures, polymerosomes, block-copolymer micelles, and more complex architectures. The review consists of two major parts: synthesis and applications of nanoparticles in colloidal dispersions, thin films, delivery devices and sensors. We also broadly discuss potential directions for further developments of this research area.

Motornov, M., Roiter, Y., Tokarev, I., & Minko, S.. (2010). Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Progress in Polymer Science, 35(1–2), 174–211.

Plain numerical DOI: 10.1016/j.progpolymsci.2009.10.004
DOI URL
directSciHub download

Buwalda, S. J., Boere, K. W. M., Dijkstra, P. J., Feijen, J., Vermonden, T., & Hennink, W. E.. (2014). Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release, 190, 254–273.

Plain numerical DOI: 10.1016/j.jconrel.2014.03.052
DOI URL
directSciHub download

See also:
Fluorescent probe-encapsulated smart nanohydrogel to enhance sensitivity toward hydrogen peroxide in living cells (Publication Date, Feb. 2023)
www.sciencedirect.com/science/article/abs/pii/S0143720822008609

  • Advances in the development of cyclodextrin-based nanogels/microgels for biomedical applications: Drug delivery and beyond 2022, Carbohydrate Polymers
  • Formation of ultrathin scarf-like micelles, ultrathin disk-like micelles and spherical micelles by self-assembly of polyurethane diblock copolymers 2022, Journal of Molecular Liquids
  • Inorganic/organic hybrid nanoparticles synthesized in a two-step radiation-driven process 2022, Radiation Physics and Chemistry
  • The influence of the functional end groups on the properties of polylactide-based materials 2022, Progress in Polymer Science
  • How molecular interactions tune the characteristic time of nanocomposite colloidal sensors 2022, Journal of Colloid and Interface Science

Psychoneuroimmunology

Psychoneuroimmunology (PNI), also referred to as psychoendoneuroimmunology (PENI) or psychoneuroendocrinoimmunology (PNEI), is the study of the interaction between psychological processes and the nervous and immune systems of the human body. It is a subfield of psychosomatic medicine. PNI takes an interdisciplinary approach, incorporating psychology, neuroscience, immunology, physiology, genetics, pharmacology, molecular biology, psychiatry, behavioral medicine, infectious diseases, endocrinology, and rheumatology.

The main interests of PNI are the interactions between the nervous and immune systems and the relationships between mental processes and health. PNI studies, among other things, the physiological functioning of the neuroimmune system in health and disease; disorders of the neuroimmune system (autoimmune diseases; hypersensitivities; immune deficiency); and the physical, chemical and physiological characteristics of the components of the neuroimmune system in vitro, in situ, and in vivo.

It is now clear that the cellular and molecular processes that make up our ‘immune system’ are also crucial to normal brain development and play a role in the pathoaetiology of many mental and physical disorders.


Troyer, E. A., Kohn, J. N., & Hong, S.. (2020). Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain, Behavior, and Immunity, 87, 34–39.

Plain numerical DOI: 10.1016/j.bbi.2020.04.027
DOI URL
directSciHub download

Hamilton-West, K.. (2011). Psychobiological Processes in Health and Illness. Psychobiological Processes in Health and Illness. 1 Oliver’s Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications Ltd

Plain numerical DOI: 10.4135/9781446251324
DOI URL
directSciHub download

Mravec, B., Tibensky, M., & Horvathova, L.. (2020). Stress and cancer. Part II: Therapeutic implications for oncology. Journal of Neuroimmunology, 346, 577312.

Plain numerical DOI: 10.1016/j.jneuroim.2020.577312
DOI URL
directSciHub download

Pahlevi, R., Putra, S. T., & Sriyono, S.. (2017). Psychoneuroimmunology Approach to Improve Recovery Motivation, Decrease Cortisol and Blood Glucose of DM Type 2 Patients with Dhikr Therapy. Jurnal Ners, 12(1), 60–65.

Plain numerical DOI: 10.20473/jn.v12i1.2315
DOI URL
directSciHub download

Mathews, H. L., & Janusek, L. W.. (2011). Epigenetics and psychoneuroimmunology: Mechanisms and models. Brain, Behavior, and Immunity, 25(1), 25–39.

Plain numerical DOI: 10.1016/j.bbi.2010.08.009
DOI URL
directSciHub download

Labanski, A., Langhorst, J., Engler, H., & Elsenbruch, S.. (2020). Stress and the brain-gut axis in functional and chronic-inflammatory gastrointestinal diseases: A transdisciplinary challenge. Psychoneuroendocrinology, 111, 104501.

Plain numerical DOI: 10.1016/j.psyneuen.2019.104501
DOI URL
directSciHub download

Leckman, J. F.. (2014). Commentary: What does immunology have to do with brain development and psychopathology? – A commentary on O’Connor et al. (2014). Journal of Child Psychology and Psychiatry and Allied Disciplines

Plain numerical DOI: 10.1111/jcpp.12259
DOI URL
directSciHub download

Segerstrom, S. C., Glover, D. A., Craske, M. G., & Fahey, J. L.. (1999). Worry Affects the Immune Response to Phobic Fear. Brain, Behavior, and Immunity, 13(2), 80–92.

Plain numerical DOI: 10.1006/brbi.1998.0544
DOI URL
directSciHub download

Aziez Chettoum, Kamilia Guedri, Zouhir Djerrou, Rachid Mosbah, Latifa Khattabi, Abir Boumaaza, & Wissam Benferdi. (2020). Distribution of leukocyte subpopulation among students threatened by failure. International Journal of Research in Pharmaceutical Sciences, 11(3), 3807–3812.

Plain numerical DOI: 10.26452/ijrps.v11i3.2553
DOI URL
directSciHub download

Neuromodulation techniques: A synoptic overview


Peter, N., & Kleinjung, T.. (2019). Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques. Journal of Zhejiang University: Science B

Plain numerical DOI: 10.1631/jzus.B1700117
DOI URL
directSciHub download

Fomenko, A., Neudorfer, C., Dallapiazza, R. F., Kalia, S. K., & Lozano, A. M.. (2018). Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications. Brain Stimulation

Plain numerical DOI: 10.1016/j.brs.2018.08.013
DOI URL
directSciHub download

Brock, D. G., & Demitrack, M. A.. (2014). Therapeutic neuromodulation: Overview of a novel treatment platform. Psychiatric Annals

Plain numerical DOI: 10.3928/00485713-20140609-04
DOI URL
directSciHub download

Gunduz, A., & Ruffini, G.. (2018). Editorial overview: Neuromodulation. Current Opinion in Biomedical Engineering

Plain numerical DOI: 10.1016/j.cobme.2018.12.001
DOI URL
directSciHub download

Pathak, Y. J., Greenleaf, W., Verhagen Metman, L., Kubben, P., Sarma, S., Pepin, B., … Ross, E.. (2021). Digital Health Integration With Neuromodulation Therapies: The Future of Patient-Centric Innovation in Neuromodulation. Frontiers in Digital Health

Plain numerical DOI: 10.3389/fdgth.2021.618959
DOI URL
directSciHub download

Velasco, F.. (2000). Neuromodulation: An overview. Archives of Medical Research

Plain numerical DOI: 10.1016/S0188-4409(00)00063-1
DOI URL
directSciHub download

Tanagho, E. A.. (2012). Neuromodulation and neurostimulation: Overview and future potential. Translational Andrology and Urology

Plain numerical DOI: 10.3978/j.issn.2223-4683.2012.01.01
DOI URL
directSciHub download

Kulkarni, S., & Kothari, S.. (2020). Pediatric Movement Disorders and Neuromodulation: An Overview. In Neurology India

Plain numerical DOI: 10.4103/0028-3886.302474
DOI URL
directSciHub download

Roy, H., Offiah, I., & Dua, A.. (2018). Neuromodulation for pelvic and urogenital pain. Brain Sciences

Plain numerical DOI: 10.3390/brainsci8100180
DOI URL
directSciHub download

N., P., & T., K.. (2019). Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques. Journal of Zhejiang University: Science B
McCormick, D. A., & Nusbaum, M. P.. (2014). Editorial overview: Neuromodulation: Tuning the properties of neurons, networks and behavior. Current Opinion in Neurobiology

Plain numerical DOI: 10.1016/j.conb.2014.10.010
DOI URL
directSciHub download

Yu, K., Niu, X., & He, B.. (2020). Neuromodulation Management of Chronic Neuropathic Pain in the Central Nervous System. Advanced Functional Materials

Plain numerical DOI: 10.1002/adfm.201908999
DOI URL
directSciHub download

(2019). An overview on Neuromodulation. Case Medical Research

Plain numerical DOI: 10.31525/cmr-fbd972
DOI URL
directSciHub download

Vanneste, S., & De Ridder, D.. (2012). Noninvasive and invasive neuromodulation for the treatment of tinnitus: An overview. Neuromodulation

Plain numerical DOI: 10.1111/j.1525-1403.2012.00447.x
DOI URL
directSciHub download

Waldron, N. H., Fudim, M., Mathew, J. P., & Piccini, J. P.. (2019). Neuromodulation for the Treatment of Heart Rhythm Disorders. JACC: Basic to Translational Science

Plain numerical DOI: 10.1016/j.jacbts.2019.02.009
DOI URL
directSciHub download

Luigjes, J., Breteler, R., Vanneste, S., & de Ridder, D.. (2013). [Neuromodulation as an intervention for addiction: overview and future prospects].. Tijdschrift Voor Psychiatrie
Brunoni, A. R., Teng, C. T., Correa, C., Imamura, M., Brasil-Neto, J. P., Boechat, R., … Fregni, F.. (2010). Neuromodulation approaches for the treatment of major depression: Challenges and recommendations from a working group meeting. Arquivos de Neuro-Psiquiatria

Plain numerical DOI: 10.1590/s0004-282×2010000300021
DOI URL
directSciHub download

Antony, A. B., Mazzola, A. J., Dhaliwal, G. S., & Hunter, C. W.. (2019). Neurostimulation for the treatment of chronic head and facial pain: A literature review. Pain Physician

Plain numerical DOI: 10.36076/ppj/2019.22.447
DOI URL
directSciHub download

Schluter, R. S., Daams, J. G., Van Holst, R. J., & Goudriaan, A. E.. (2018). Effects of non-invasive neuromodulation on executive and other cognitive functions in addictive disorders: A systematic review. Frontiers in Neuroscience

Plain numerical DOI: 10.3389/fnins.2018.00642
DOI URL
directSciHub download

Hunter, C. W., Stovall, B., Chen, G., Carlson, J., & Levy, R.. (2018). Anatomy, pathophysiology and interventional therapies for chronic pelvic pain: A review. Pain Physician

Plain numerical DOI: 10.36076/ppj.2018.2.147
DOI URL
directSciHub download

Powell, K., Shah, K., Hao, C., Wu, Y.-C., John, A., Narayan, R. K., & Li, C.. (2019). Neuromodulation as a new avenue for resuscitation in hemorrhagic shock. Bioelectronic Medicine

Plain numerical DOI: 10.1186/s42234-019-0033-z
DOI URL
directSciHub download

Fletcher, N.. (2020). An overview of sacral neuromodulation: A treatment for patients with symptoms of lower urinary tract dysfunction. British Journal of Nursing

Plain numerical DOI: 10.12968/bjon.2020.29.15.848
DOI URL
directSciHub download

Shin, S. S., & Pelled, G.. (2017). Novel neuromodulation techniques to assess interhemispheric communication in neural injury and neurodegenerative diseases. Frontiers in Neural Circuits

Plain numerical DOI: 10.3389/fncir.2017.00015
DOI URL
directSciHub download

Abboud, H., Hill, E., Siddiqui, J., Serra, A., & Walter, B.. (2017). Neuromodulation in multiple sclerosis. Multiple Sclerosis

Plain numerical DOI: 10.1177/1352458517736150
DOI URL
directSciHub download

Tohyama, S., Walker, M. R., Sammartino, F., Krishna, V., & Hodaie, M.. (2020). The Utility of Diffusion Tensor Imaging in Neuromodulation: Moving Beyond Conventional Magnetic Resonance Imaging. Neuromodulation

Plain numerical DOI: 10.1111/ner.13107
DOI URL
directSciHub download

Lakatos, P., Gross, J., & Thut, G.. (2019). A New Unifying Account of the Roles of Neuronal Entrainment. Current Biology

Plain numerical DOI: 10.1016/j.cub.2019.07.075
DOI URL
directSciHub download

Vlaicu, A., & Bustuchina Vlaicu, M.. (2020). New neuromodulation techniques for treatment resistant depression. International Journal of Psychiatry in Clinical Practice

Plain numerical DOI: 10.1080/13651501.2020.1728340
DOI URL
directSciHub download

Yang, X., McGlynn, E., Das, R., Paşca, S. P., Cui, B., & Heidari, H.. (2021). Nanotechnology Enables Novel Modalities for Neuromodulation. Advanced Materials

Plain numerical DOI: 10.1002/adma.202103208
DOI URL
directSciHub download

Ramirez-Zamora, A., Giordano, J. J., Gunduz, A., Brown, P., Sanchez, J. C., Foote, K. D., … Okun, M. S.. (2018). Evolving applications, technological challenges and future opportunities in neuromodulation: Proceedings of the fifth annual deep brain stimulation think tank. Frontiers in Neuroscience

Plain numerical DOI: 10.3389/fnins.2017.00734
DOI URL
directSciHub download

Goudriaan, A. E., & Schluter, R. S.. (2019). Non-invasive Neuromodulation in Problem Gambling: What Are the Odds?. Current Addiction Reports

Plain numerical DOI: 10.1007/s40429-019-00266-y
DOI URL
directSciHub download

Elias, G. J. B., Boutet, A., Parmar, R., Wong, E. H. Y., Germann, J., Loh, A., … Bhat, V.. (2021). Neuromodulatory treatments for psychiatric disease: A comprehensive survey of the clinical trial landscape. Brain Stimulation

Plain numerical DOI: 10.1016/j.brs.2021.08.021
DOI URL
directSciHub download

Doshi, P. P., Russo, M., & Doshi, P. K.. (2021). Practice Trends of Neuromodulation Therapies for Pain and Spasticity in India. Neuromodulation

Plain numerical DOI: 10.1111/ner.13393
DOI URL
directSciHub download

Ward, M., Doran, J., Paskhover, B., & Mammis, A.. (2018). The 50 Most Cited Articles in Invasive Neuromodulation. World Neurosurgery

Plain numerical DOI: 10.1016/j.wneu.2018.02.170
DOI URL
directSciHub download

Starling, A.. (2018). Noninvasive neuromodulation in migraine and cluster headache. Current Opinion in Neurology

Plain numerical DOI: 10.1097/WCO.0000000000000557
DOI URL
directSciHub download

Senova, S., Fomenko, A., Gondard, E., & Lozano, A. M.. (2020). Anatomy and function of the fornix in the context of its potential as a therapeutic target. Journal of Neurology, Neurosurgery and Psychiatry

Plain numerical DOI: 10.1136/jnnp-2019-322375
DOI URL
directSciHub download

Doesborg, P., & Haan, J.. (2018). Cluster headache: New targets and options for treatment. F1000Research

Plain numerical DOI: 10.12688/f1000research.13380.1
DOI URL
directSciHub download

Gardner, J.. (2017). Securing a future for responsible neuromodulation in children: The importance of maintaining a broad clinical gaze. European Journal of Paediatric Neurology

Plain numerical DOI: 10.1016/j.ejpn.2016.04.019
DOI URL
directSciHub download

Crockett, M. J., & Fehr, E.. (2014). Social brains on drugs: Tools for neuromodulation in social neuroscience. Social Cognitive and Affective Neuroscience

Plain numerical DOI: 10.1093/scan/nst113
DOI URL
directSciHub download

Edwards, C. A., Kouzani, A., Lee, K. H., & Ross, E. K.. (2017). Neurostimulation Devices for the Treatment of Neurologic Disorders. Mayo Clinic Proceedings

Plain numerical DOI: 10.1016/j.mayocp.2017.05.005
DOI URL
directSciHub download

Rimmele, F., & Jürgens, T. P.. (2020). Neuromodulation in primary headaches: current evidence and integration into clinical practice. Current Opinion in Neurology

Plain numerical DOI: 10.1097/WCO.0000000000000820
DOI URL
directSciHub download

La Rosa, V. L., Platania, A., Ciebiera, M., Garzon, S., Jȩdra, R., Ponta, M., & Buttice, S.. (2019). A comparison of sacral neuromodulation vs. transvaginal electrical stimulation for the treatment of refractory overactive bladder: The impact on quality of life, body image, sexual function, and emotional well-being. Przeglad Menopauzalny

Plain numerical DOI: 10.5114/pm.2019.86834
DOI URL
directSciHub download

Pericolini, M., Miget, G., Hentzen, C., Finazzi Agrò, E., Chesnel, C., Lagnau, P., … Amarenco, G.. (2021). Cortical, Spinal, Sacral, and Peripheral Neuromodulations as Therapeutic Approaches for the Treatment of Lower Urinary Tract Symptoms in Multiple Sclerosis Patients: A Review. Neuromodulation

Plain numerical DOI: 10.1111/ner.13525
DOI URL
directSciHub download

Pauwels, N., Willemse, C., Hellemans, S., Komen, N., Van den Broeck, S., Roenen, J., … De Schepper, H.. (2021). The role of neuromodulation in chronic functional constipation: A systematic review. Acta Gastro-Enterologica Belgica

Plain numerical DOI: 10.51821/84.3.012
DOI URL
directSciHub download

Azad, T. D., Veeravagu, A., & Steinberg, G. K.. (2016). Neurorestoration after stroke. Neurosurgical Focus

Plain numerical DOI: 10.3171/2016.2.FOCUS15637
DOI URL
directSciHub download

de Wall, L. L., & Heesakkers, J. P. F. A.. (2017). Effectiveness of percutaneous tibial nerve stimulation in the treatment of overactive bladder syndrome. Research and Reports in Urology

Plain numerical DOI: 10.2147/RRU.S124981
DOI URL
directSciHub download

Ramirez-Zamora, A., Giordano, J., Boyden, E. S., Gradinaru, V., Gunduz, A., Starr, P. A., … Okun, M. S.. (2019). Proceedings of the Sixth Deep Brain Stimulation Think Tank Modulation of Brain Networks and Application of Advanced Neuroimaging, Neurophysiology, and Optogenetics. In Frontiers in Neuroscience

Plain numerical DOI: 10.3389/fnins.2019.00936
DOI URL
directSciHub download

Klooster, D. C. W., de Louw, A. J. A., Aldenkamp, A. P., Besseling, R. M. H., Mestrom, R. M. C., Carrette, S., … Boon, P.. (2016). Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols. Neuroscience and Biobehavioral Reviews

Plain numerical DOI: 10.1016/j.neubiorev.2016.02.016
DOI URL
directSciHub download

De Ridder, D., Manning, P., Cape, G., Vanneste, S., Langguth, B., & Glue, P.. (2016). Pathophysiology-Based Neuromodulation for Addictions: An Overview. In Neuropathology of Drug Addictions and Substance Misuse

Plain numerical DOI: 10.1016/B978-0-12-800213-1.00002-X
DOI URL
directSciHub download

Lo, P. A., Huang, K., Zhou, Q., Humayun, M. S., & Yue, L.. (2020). Ultrasonic retinal neuromodulation and acoustic retinal prosthesis. Micromachines

Plain numerical DOI: 10.3390/mi11100929
DOI URL
directSciHub download

Krauss, J. K., Lipsman, N., Aziz, T., Boutet, A., Brown, P., Chang, J. W., … Lozano, A. M.. (2021). Technology of deep brain stimulation: current status and future directions. Nature Reviews Neurology

Plain numerical DOI: 10.1038/s41582-020-00426-z
DOI URL
directSciHub download

S., V., & D., D. R.. (2012). Noninvasive and invasive neuromodulation for the treatment of tinnitus: An overview. Neuromodulation
Kaczmarek, K. A.. (2017). The Portable Neuromodulation Stimulator (PoNS) for neurorehabilitation. Scientia Iranica

Plain numerical DOI: 10.24200/sci.2017.4489
DOI URL
directSciHub download

Somani, A., & Kar, S. K.. (2019). Efficacy of repetitive transcranial magnetic stimulation in treatment-resistant depression: The evidence thus far. General Psychiatry

Plain numerical DOI: 10.1136/gpsych-2019-100074
DOI URL
directSciHub download

Meng, Y., Hynynen, K., & Lipsman, N.. (2021). Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nature Reviews Neurology

Plain numerical DOI: 10.1038/s41582-020-00418-z
DOI URL
directSciHub download

Coman, A., Skårderud, F., Reas, D. L., & Hofmann, B. M.. (2014). The ethics of neuromodulation for anorexia nervosa: A focus on rTMS. Journal of Eating Disorders

Plain numerical DOI: 10.1186/2050-2974-2-10
DOI URL
directSciHub download

Herremans, S. C., & Baeken, C.. (2017). Clinical effects of non-invasive neuromodulation techniques in substance use disorder: An overview. Tijdschrift Voor Psychiatrie
Tyler, W. J.. (2011). Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist

Plain numerical DOI: 10.1177/1073858409348066
DOI URL
directSciHub download

Yamamoto, K., Elias, G. J. B., Beyn, M. E., Zemmar, A., Loh, A., Sarica, C., … Lozano, A. M.. (2021). Neuromodulation for Pain: A Comprehensive Survey and Systematic Review of Clinical Trials and Connectomic Analysis of Brain Targets. Stereotactic and Functional Neurosurgery

Plain numerical DOI: 10.1159/000517873
DOI URL
directSciHub download

Hennessey, D. B., Hoag, N., & Gani, J.. (2017). Impact of bladder dysfunction in the management of post radical prostatectomy stress urinary incontinence-a review. Translational Andrology and Urology

Plain numerical DOI: 10.21037/tau.2017.04.14
DOI URL
directSciHub download

Urits, I., Schwartz, R., Smoots, D., Koop, L., Veeravelli, S., Orhurhu, V., … Viswanath, O.. (2020). Peripheral neuromodulation for the management of headache. Anesthesiology and Pain Medicine

Plain numerical DOI: 10.5812/aapm.110515
DOI URL
directSciHub download

Robbins, M. S., & Burch, R.. (2021). Preventive Migraine Treatment. CONTINUUM Lifelong Learning in Neurology

Plain numerical DOI: 10.1212/CON.0000000000000957
DOI URL
directSciHub download

Ahmed, A. I., & Lucas, J. D.. (2020). Spinal cord injury: pathophysiology and strategies for regeneration. Orthopaedics and Trauma

Plain numerical DOI: 10.1016/j.mporth.2020.06.003
DOI URL
directSciHub download

Argiolas, A., & Melis, M. R.. (1995). Neuromodulation of penile erection: an overview of the role of neurotransmitters and neuropeptides. Progress in Neurobiology

Plain numerical DOI: 10.1016/0301-0082(95)80003-Q
DOI URL
directSciHub download

Mohammad, S. S., Paget, S. P., & Dale, R. C.. (2019). Current therapies and therapeutic decision making for childhood-onset movement disorders. Movement Disorders

Plain numerical DOI: 10.1002/mds.27661
DOI URL
directSciHub download

Rajan, R., Skorvanek, M., Magocova, V., Siddiqui, J., Alsinaidi, O., Shinawi, H., … Bajwa, J.. (2020). Neuromodulation Options and Patient Selection for Parkinson’s Disease. In Neurology India

Plain numerical DOI: 10.4103/0028-3886.302473
DOI URL
directSciHub download

Dean, O. M., Gliddon, E., Van Rheenen, T. E., Giorlando, F., Davidson, S. K., Kaur, M., … Williams, L. J.. (2018). An update on adjunctive treatment options for bipolar disorder. Bipolar Disorders

Plain numerical DOI: 10.1111/bdi.12601
DOI URL
directSciHub download

Moisset, X., Lanteri-Minet, M., & Fontaine, D.. (2020). Neurostimulation methods in the treatment of chronic pain. Journal of Neural Transmission

Plain numerical DOI: 10.1007/s00702-019-02092-y
DOI URL
directSciHub download

Erőss, L., Entz, L., & Fabó, D.. (2015). Invasive neuromodulation in the treatment of drug-resistant epilepsies. Orvosi Hetilap

Plain numerical DOI: 10.1556/650.2015.30319
DOI URL
directSciHub download

Ashina, M., Buse, D. C., Ashina, H., Pozo-Rosich, P., Peres, M. F. P., Lee, M. J., … Dodick, D. W.. (2021). Migraine: integrated approaches to clinical management and emerging treatments. The Lancet

Plain numerical DOI: 10.1016/S0140-6736(20)32342-4
DOI URL
directSciHub download

All, A. H., Zeng, X., Teh, D. B. L., Yi, Z., Prasad, A., Ishizuka, T., … Liu, X.. (2019). Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation. Advanced Materials

Plain numerical DOI: 10.1002/adma.201803474
DOI URL
directSciHub download

Fandel, T., & Tanagho, E. A.. (2005). Neuromodulation in voiding dysfunction: A historical overview of neurostimulation and its application. Urologic Clinics of North America

Plain numerical DOI: 10.1016/j.ucl.2004.09.006
DOI URL
directSciHub download

Zbar, A. P.. (2014). Sacral neuromodulation and peripheral nerve stimulation in patients with anal incontinence: An overview of techniques, complications and troubleshooting. Gastroenterology Report

Plain numerical DOI: 10.1093/gastro/gou015
DOI URL
directSciHub download

Karri, J., Singh, M., Orhurhu, V., Joshi, M., & Abd-Elsayed, A.. (2020). Pain Syndromes Secondary to Cluneal Nerve Entrapment. Current Pain and Headache Reports

Plain numerical DOI: 10.1007/s11916-020-00891-7
DOI URL
directSciHub download

Fekete, Z., Horváth, C., & Zátonyi, A.. (2020). Infrared neuromodulation:A neuroengineering perspective. Journal of Neural Engineering

Plain numerical DOI: 10.1088/1741-2552/abb3b2
DOI URL
directSciHub download

Zhu, A., Qureshi, A. A., Kozin, E. D., & Lee, D. J.. (2020). Concepts in Neural Stimulation: Electrical and Optical Modulation of the Auditory Pathways. Otolaryngologic Clinics of North America

Plain numerical DOI: 10.1016/j.otc.2019.09.002
DOI URL
directSciHub download

LeBeau, F. E. N., El Manira, A., & Griller, S.. (2005). Tuning the network: Modulation of neuronal microcircuits in the spinal cord and hippocampus. Trends in Neurosciences

Plain numerical DOI: 10.1016/j.tins.2005.08.005
DOI URL
directSciHub download

Cha, K. S., Yeo, D., & Kim, K. H.. (2016). Neural signal processing for closed-loop neuromodulation. Biomedical Engineering Letters

Plain numerical DOI: 10.1007/s13534-016-0231-5
DOI URL
directSciHub download

Hoffmann, J., & May, A.. (2019). Neuromodulation for the treatment of primary headache syndromes. Expert Review of Neurotherapeutics

Plain numerical DOI: 10.1080/14737175.2019.1585243
DOI URL
directSciHub download

Martens, F. M. J., & Sievert, K. D.. (2020). Neurostimulation in neurogenic patients. Current Opinion in Urology

Plain numerical DOI: 10.1097/MOU.0000000000000773
DOI URL
directSciHub download

Harmsen, I. E., Elias, G. J. B., Beyn, M. E., Boutet, A., Pancholi, A., Germann, J., … Lozano, A. M.. (2020). Clinical trials for deep brain stimulation: Current state of affairs. Brain Stimulation

Plain numerical DOI: 10.1016/j.brs.2019.11.008
DOI URL
directSciHub download

Chen, Y., Tang, T., & Erdek, M. A.. (2019). Advanced Image-Guided Procedures for Painful Spine. Neuroimaging Clinics of North America

Plain numerical DOI: 10.1016/j.nic.2019.07.005
DOI URL
directSciHub download

Mishra, S., Kumar, A., Padmanabhan, P., & Gulyás, B.. (2021). Neurophysiological correlates of cognition as revealed by virtual reality: Delving the brain with a synergistic approach. Brain Sciences

Plain numerical DOI: 10.3390/brainsci11010051
DOI URL
directSciHub download

Christen, M., & Müller, S.. (2017). Editorial: The Clinical and Ethical Practice of Neuromodulation – Deep Brain Stimulation and Beyond. Frontiers in Integrative Neuroscience

Plain numerical DOI: 10.3389/fnint.2017.00032
DOI URL
directSciHub download

Stakenborg, N., & Boeckxstaens, G. E.. (2021). Bioelectronics in the brain-gut axis: Focus on inflammatory bowel disease (IBD). International Immunology

Plain numerical DOI: 10.1093/intimm/dxab014
DOI URL
directSciHub download

Serrano-Munoz, D., Taylor, J., Megia-Garcia, A., & Gomez-Soriano, J.. (2019). Neuromodulation for neurorehabilitation of motor disorders for stroke and spinal cord injury: An overview. Neuromodulation
Civelli, O.. (2012). Orphan GPCRs and Neuromodulation. Neuron

Plain numerical DOI: 10.1016/j.neuron.2012.09.009
DOI URL
directSciHub download

Wagner, T., Valero-Cabre, A., & Pascual-Leone, A.. (2007). Noninvasive human brain stimulation. Annual Review of Biomedical Engineering

Plain numerical DOI: 10.1146/annurev.bioeng.9.061206.133100
DOI URL
directSciHub download

Cho, Y., Park, J., Lee, C., & Lee, S.. (2020). Recent progress on peripheral neural interface technology towards bioelectronic medicine. Bioelectronic Medicine

Plain numerical DOI: 10.1186/s42234-020-00059-z
DOI URL
directSciHub download

Linster, C.. (2014). Neuromodulation: Overview. In Encyclopedia of Computational Neuroscience

Plain numerical DOI: 10.1007/978-1-4614-7320-6_787-1
DOI URL
directSciHub download

Lakatos, P., Gross, J., & Thut, G.. (2019). Review A New Unifying Account of the Roles of Neuronal. Current Biology
Bartoli, F., Burnstock, G., Crocamo, C., & Carrà, G.. (2020). Purinergic signaling and related biomarkers in depression. Brain Sciences

Plain numerical DOI: 10.3390/brainsci10030160
DOI URL
directSciHub download

Fellous, J. M., & Linster, C.. (1998). Computational Models of Neuromodulation. Neural Computation

Plain numerical DOI: 10.1162/089976698300017476
DOI URL
directSciHub download

Chaudhry, S. R., Stadlbauer, A., Buchfelder, M., & Kinfe, T. M.. (2021). Melatonin moderates the triangle of chronic pain, sleep architecture and immunometabolic traffic. Biomedicines

Plain numerical DOI: 10.3390/biomedicines9080984
DOI URL
directSciHub download

Konofagou, E.. (2018). Focused ultrasound for modulation of the central and peripheral nervous system. The Journal of the Acoustical Society of America

Plain numerical DOI: 10.1121/1.5035647
DOI URL
directSciHub download

Byron, N., Semenova, A., & Sakata, S.. (2021). Mutual interactions between brain states and Alzheimer’s disease pathology: A focus on gamma and slow oscillations. Biology

Plain numerical DOI: 10.3390/biology10080707
DOI URL
directSciHub download

Kohan, L., McKenna, C., & Irwin, A.. (2020). Ilioinguinal Neuropathy. Current Pain and Headache Reports

Plain numerical DOI: 10.1007/s11916-020-0833-6
DOI URL
directSciHub download

Chen, S. P., & Ayata, C.. (2017). Novel Therapeutic Targets Against Spreading Depression. Headache

Plain numerical DOI: 10.1111/head.13154
DOI URL
directSciHub download

Ekhtiari, H., Tavakoli, H., Addolorato, G., Baeken, C., Bonci, A., Campanella, S., … Hanlon, C. A.. (2019). Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: A consensus paper on the present state of the science and the road ahead. Neuroscience and Biobehavioral Reviews

Plain numerical DOI: 10.1016/j.neubiorev.2019.06.007
DOI URL
directSciHub download

Fridén, J., House, J., Keith, M., Schibli, S., & van Zyl, N.. (2021). Improving hand function after spinal cord injury. Journal of Hand Surgery: European Volume

Plain numerical DOI: 10.1177/17531934211027460
DOI URL
directSciHub download

Anderson, N. D., & Craik, F. I. M.. (2017). 50 years of cognitive aging theory. Journals of Gerontology – Series B Psychological Sciences and Social Sciences

Plain numerical DOI: 10.1093/geronb/gbw108
DOI URL
directSciHub download

UNESCO, Neuropolitics & Transhumanism

 

Developments in biotechnology and neuroscience have the potential to unleash an engineering of human beings previously inconceivable. Proper ethical governance and a new understanding of humanism, are necessary to steer these technological developments in the direction of supporting sustainable, just and peaceful futures. Such futures will depend on open data, open science and an expanded understanding of the right to education to include the right to data, to information and to the protection of privacy.

UNESO, International Commission on the Futures of Education, p.8 et seq.


375746eng

“It is, however, essential that eugenics should be brought entirely within the borders of science, for, as already indicated, in the not very remote future the problem of improving the average quality of human beings is likely to become urgent; and this can only be accomplished by applying the findings of a truly scientific eugenics.”

Sir Julian Sorell Huxley
From UNESCO Its Purpose and Its Philosophy

unesco
Hitchner, D. G., & Huxley, J.. (1948). UNESCO: Its Purpose and Its Philosophy. The Western Political Quarterly

Plain numerical DOI: 10.2307/442317
DOI URL
directSciHub download

Page 1234
scanned image of page 135
scanned image of page 135
scanned image of page 135
scanned image of page 135

See also cognitive-liberty.online/julian-huxley-unesco-and-eugenics/

Google’s Whitepaper on the “fight” of disinformation

George Lakoff could write a book on the “conceptual metaphor” employed in the title of the whitepaper. George Orwell is turning in his grave (the “digital algorithmic ministry of truth”).

Here are the “three foundational pillars” of the whitepaper (expressis verbis):

  • Improve our products so they continue to make quality count;
  • Counteract malicious actors seeking to spread disinformation;
  • Give people context about the information they see.

PDF: storage.googleapis.com/gweb-uniblog-publish-prod/documents/How_Google_Fights_Disinformation.pdf
URLs: blog.google/around-the-globe/google-europe/fighting-disinformation-across-our-products/
www.securityconference.de


Further References

Lakoff, G.. (2014). Metaphor and War: The Metaphor System Used to Justify War in the Gulf. Cognitive Semiotics

Plain numerical DOI: 10.1515/cogsem.2009.4.2.5
DOI URL
directSciHub download

Steuter, E., & Wills, D.. (2008). At war with metaphor. Nueva York: Rowman and …

Plain numerical DOI: 10.1186/1471-2148-10-4
DOI URL
directSciHub download

Thibodeau, P. H., Hendricks, R. K., & Boroditsky, L.. (2017). How Linguistic Metaphor Scaffolds Reasoning. Trends in Cognitive Sciences

Plain numerical DOI: 10.1016/j.tics.2017.07.001
DOI URL
directSciHub download

Hülsse, R., & Spencer, A.. (2008). The metaphor of terror: Terrorism studies and the constructivist turn. Security Dialogue

Plain numerical DOI: 10.1177/0967010608098210
DOI URL
directSciHub download

Ferrari, F.. (2007). Metaphor at work in the analysis of political discourse: Investigating a “preventive war” persuasion strategy. Discourse and Society

Plain numerical DOI: 10.1177/0957926507079737
DOI URL
directSciHub download

Thibodeau, P., Mcclelland, J. L., & Boroditsky, L.. (2009). When a bad metaphor may not be a victimless crime : The role of metaphor in social policy. Proceedings of the Annual Meeting of the Cognitive Science Society

Plain numerical DOI: 10.1287/mnsc.1070.0713
DOI URL
directSciHub download

Spencer, A.. (2012). The social construction of terrorism: Media, metaphors and policy implications. Journal of International Relations and Development

Plain numerical DOI: 10.1057/jird.2012.4
DOI URL
directSciHub download

At war with metaphor: media, propaganda, and racism in the war on terror. (2013). Choice Reviews Online

Plain numerical DOI: 10.5860/choice.46-3669
DOI URL
directSciHub download

Kövecses, Z.. (2016). Conceptual metaphor theory. In The Routledge Handbook of Metaphor and Language

Plain numerical DOI: 10.4324/9781315672953
DOI URL
directSciHub download

Navaro-Yashin, Y.. (2009). Affective spaces, melancholic objects: Ruination and the production of anthropological knowledge. Journal of the Royal Anthropological Institute

Plain numerical DOI: 10.1111/j.1467-9655.2008.01527.x
DOI URL
directSciHub download

Koller, V., Hardie, A., Rayson, P., & Semino, E.. (2008). Using a semantic annotation tool for the analysis of metaphor in discourse. Metaphorik.De
Yanık, L. K.. (2009). The Metamorphosis of Metaphors of Vision: “Bridging” Turkey’s Location, Role and Identity After the End of the Cold War. Geopolitics

Plain numerical DOI: 10.1080/14650040802693515
DOI URL
directSciHub download

The nucleus accumbens, dopamine, and social learning

Key excerpt
The nucleus accumbens has a significant role in the cognitive processing of motivation, aversion, reward (i.e., incentive salience, pleasure, and positive reinforcement), and reinforcement learning (e.g., Pavlovian-instrumental transfer).

 

Sagittal MRI slice with highlighting (red) indicating the nucleus accumbens.

The nucleus accumbens (NAc or NAcc), also known as the accumbens nucleus, or formerly as the nucleus accumbens septi (Latin for nucleus adjacent to the septum) is a region in the basal forebrain rostral to the preoptic area of the hypothalamus.[1] The nucleus accumbens and the olfactory tubercle collectively form the ventral striatum. The ventral striatum and dorsal striatum collectively form the striatum, which is the main component of the basal ganglia.The dopaminergic neurons of the mesolimbic pathway project onto the GABAergic medium spiny neurons of the nucleus accumbens and olfactory tubercle. Each cerebral hemisphere has its own nucleus accumbens, which can be divided into two structures: the nucleus accumbens core and the nucleus accumbens shell. These substructures have different morphology and functions.

Different NAcc subregions (core vs shell) and neuron subpopulations within each region (D1-type vs D2-type medium spiny neurons) are responsible for different cognitive functions. As a whole, the nucleus accumbens has a significant role in the cognitive processing of motivation, aversion, reward (i.e., incentive salience, pleasure, and positive reinforcement), and reinforcement learning (e.g., Pavlovian-instrumental transfer); hence, it has a significant role in addiction. In addition, part of the nucleus accumbens core is centrally involved in the induction of slow-wave sleep. The nucleus accumbens plays a lesser role in processing fear (a form of aversion), impulsivity, and the placebo effect. It is involved in the encoding of new motor programs as well.

en.wikipedia.org/wiki/Nucleus_accumbens

Display related posts

Further References

Dölen, G., Darvishzadeh, A., Huang, K. W., & Malenka, R. C.. (2013). Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature

Plain numerical DOI: 10.1038/nature12518
DOI URL
directSciHub download

Trezza, V., Damsteegt, R., Achterberg, E. J. M., & Vanderschuren, L. J. M. J.. (2011). Nucleus Accumbens -Opioid Receptors Mediate Social Reward. Journal of Neuroscience

Plain numerical DOI: 10.1523/JNEUROSCI.5492-10.2011
DOI URL
directSciHub download

Day, J. J., Roitman, M. F., Wightman, R. M., & Carelli, R. M.. (2007). Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nature Neuroscience

Plain numerical DOI: 10.1038/nn1923
DOI URL
directSciHub download

Wise, R.. (1989). Brain Dopamine And Reward. Annual Review of Psychology

Plain numerical DOI: 10.1146/annurev.psych.40.1.191
DOI URL
directSciHub download

Prof. Rainer Mausfeld – Neoliberal indoctrination: Why do the lambs remain silent?

www.uni-kiel.de/psychologie/mausfeld/
Mausfeld_Why do the lambs remain silent_2015
Mausfeld focuses on perceptual psychology and also works on the theoretical foundations of experimental psychology and the psychology of understanding. He also deals with the rivalry of cognitive psychology and cognitive neuroscience in cognitive science. Another area of interest is the history of ideas in the natural sciences. He sees a major problem of the relationship between psychology and biology in neurological neo-reductionism. In contrast to biologistic approaches, he sees the peculiarity of the spiritual, inter alia, in the intrinsic multiperspectivity of the mind.
Mausfeld points out that knowledge of neural circuitry and activity is not enough to explain consciousness and thought processes. Not even the behavior of nematodes can be deduced from the activity of their 302 neurons. According to Mausfeld’s view, the relationship between nature and mind must be below the neural level in the sphere of physics. Evidence is given by the fact that nature is actually more enigmatic to us than our consciousness in itself. In modern physics it has become clear that the physical does not have the properties of matter ascribed to it. Mausfeld sees the special aspect of consciousness in the simplicity and wholeness of the subjective experience, which, however, reveals itself to the psychologist as a complex interaction of unconscious factors. The intrinsic multiperspectivity of thinking, which first opens up the possibilities for thought and action alternatives to humans after mouse field, results from the complex interplay of the most varied of factors.
White torture and responsibility of science
In his work, Mausfeld illustrates the role of psychologists in the development, application and justification of modern white torture methods. These goals are not, as claimed, the extraction of information, but rather breaking the will, disciplining, humiliating and shaming the victims. In his account, an American Psychological Association (APA) working group to investigate the involvement of psychologists acting on behalf of the Defense Secretary. Mausfeld uses the example of torture research to define ethical and legal principles and limits of scientific work. He regards the observance of human rights as fully binding.

Mausfeld, R.. (2009). Psychology , ’ white torture ’ and the responsibility of scientists. Psychologische Rundschau

Plain numerical DOI: 10.1186/s12882-018-0886-5
DOI URL
directSciHub download

Mausfeld, R.. (2009). Psychologie, weiße folter’ und die verantwortlichkeit von wissenschaftlern. Psychologische Rundschau

Plain numerical DOI: 10.1026/0033-3042.60.4.229
DOI URL
directSciHub download

Cognitive techniques

According to Mausfeld, the cognitive ones are more important than the affective techniques, since opinions are more stable than emotions. Here Mausfeld examines the following methods:

  • Representation of facts as opinion
  • Fragmenting coherent facts so that the context, such as the historical context, is lost
  • Decontextualization of facts: The context of the facts is removed, so that the facts become incomprehensible isolated individual cases, which have no general relevance
  • Misleading recontextualization: Information is embedded in a foreign context, so that they take on a different character and, for example, no longer lead to outrage in human rights violations.
  • Repetition supports the “perceived truth”
  • Designing the range of opinions so that the desired seems to be in the middle, which most people strive for, if they are unfamiliar, because they then keep to the middle seein it as “neutral and balanced”
  • Making facts invisible through media selection, distraction and attention control
  • “Meta-propaganda”: It is part of every propaganda to claim that the news of the enemy is wrong because it is propaganda

The development of more efficient manipulation techniques rests on identifying psychological “weak spots” – those intrinsic design aspects of our mind and principles of human information processing that can be exploited for manipulation purposes. Most importantly, such principles are, by the very nature of our cognitive architecture, beyond conscious control. (…) Our mind has many hard-wired weaknesses that can be exploited for manipulative purposes, that facilitate our utilitarian abuse by the political and economic elites for maintaining and expanding their power. However, we also innately dispose of a rich repertoire of ways to use our reasoning capabilities to recognize manipulative contexts and to actively avoid them. This repertoire is akin to a natural cognitive immune system against being manipulated, but we have to take the deliberate decision to actually use it.


neoliberal indoctrination - Copy

Further References

Mausfeld, R.. (2012). On some unwarranted tacit assumptions in cognitive neuroscience. Frontiers in Psychology

Plain numerical DOI: 10.3389/fpsyg.2012.00067
DOI URL
directSciHub download

Mausfeld, R., & Heyer, D.. (2012). Colour Perception: Mind and the physical world. Colour Perception: Mind and the Physical World

Plain numerical DOI: 10.1093/acprof:oso/9780198505006.001.0001
DOI URL
directSciHub download

Mausfeld, R.. (2005). The Physicalistic Trap in Perception Theory. In Perception and the Physical World

Plain numerical DOI: 10.1002/0470013427.ch4
DOI URL
directSciHub download

Mausfeld, R.. (2012). Der Schein des Realen.. Näher Dran? Zur Phänomenologie Des Wahrnehmens
Mausfeld, R.. (2009). Psychologie, weiße folter’ und die verantwortlichkeit von wissenschaftlern. Psychologische Rundschau

Plain numerical DOI: 10.1026/0033-3042.60.4.229
DOI URL
directSciHub download

Wendt, G., Faul, F., & Mausfeld, R.. (2008). Highlight disparity contributes to the authenticity and strength of perceived glossiness. Journal of Vision

Plain numerical DOI: 10.1167/8.1.14
DOI URL
directSciHub download

Mausfeld, R.. (2010). Psychologie, biologie, kognitive neurowissenschaften zur gegenwärtigen dominanz neuroreduktionistischer positionen zu ihren stillschweigenden grundannahmen. Psychologische Rundschau

Plain numerical DOI: 10.1026/0033-3042/a000045
DOI URL
directSciHub download

Heyer, D., & Mausfeld, R.. (2002). Perception and the physical world: psychological and philosophical issues in perception. Perception
Narens, L., & Mausfeld, R.. (1992). On the Relationship of the Psychological and the Physical in Psychophysics. Psychological Review

Plain numerical DOI: 10.1037/0033-295X.99.3.467
DOI URL
directSciHub download

Mausfeld, R.. (2012). “Colour” As Part of the Format of Different Perceptual Primitives: The Dual Coding of Colour. In Colour Perception: Mind and the Physical World

Plain numerical DOI: 10.1093/acprof:oso/9780198505006.003.0013
DOI URL
directSciHub download

Mausfeld, R.. (2013). The Attribute of Realness and the Internal Organization of Perceptual Reality. In Handbook of Experimental Phenomenology: Visual Perception of Shape, Space and Appearance

Plain numerical DOI: 10.1002/9781118329016.ch3
DOI URL
directSciHub download

Mausfeld, R.. (2001). What’s within? Can the internal structure of perception be derived from regularities of the external world?. Behavioral and Brain Sciences

Plain numerical DOI: 10.1017/S0140525X01530083
DOI URL
directSciHub download

Mausfeld, R., & Andres, J.. (2002). Second-order statistics of colour codes modulate transformations that effectuate varying degrees of scene invariance and illumination invariance. Perception

Plain numerical DOI: 10.1068/p07sp
DOI URL
directSciHub download

Mausfeld, R.. (2006). Wahrnehmung: Geschichte und Ansätze. In Handbuch der Allgemeinen Psychologie – Kognition

Plain numerical DOI: 10.1111/j.1365-2141.2008.07177.x
DOI URL
directSciHub download

Mausfeld, R.. (2010). Intrinsic multiperspectivity: On the architectural foundations of a distinctive mental capacity. In Cognition and Neuropsychology: International Perspectives on Psychological Science

Plain numerical DOI: 10.4324/9780203845820
DOI URL
directSciHub download

Mausfeld, R.. (2013). The Biological Function of Sensory Systems. In Neurosciences – From Molecule to Behavior: a university textbook

Plain numerical DOI: 10.1007/978-3-642-10769-6_12
DOI URL
directSciHub download

Andres, J., & Mausfeld, R.. (2008). Structural description and qualitative content in perception theory. Consciousness and Cognition

Plain numerical DOI: 10.1016/j.concog.2006.11.005
DOI URL
directSciHub download

Mausfeld, R., Wendt, G., & Golz, J.. (2014). Lustrous material Appearances: Internal and external constraints on triggering conditions for binocular lustre. I-Perception

Plain numerical DOI: 10.1068/i0603
DOI URL
directSciHub download

Wake up: The ‘Ascending reticular activating system’ (ARAS) and its role in consciousness & attention

The reticular formation is essential for governing some of the basic functions of higher organisms and is one of the phylogenetically oldest portions of the brain.

The ascending reticular activating system (ARAS), also known as the extrathalamic control modulatory system or simply the reticular activating system (RAS), is a set of connected nuclei in the brains of vertebrates that is responsible for regulating wakefulness and sleep-wake transitions. The ARAS is a part of the reticular formation and is mostly composed of various nuclei in the thalamus and a number of dopaminergic, noradrenergic, serotonergic, histaminergic, cholinergic, and glutamatergic brain nuclei.

The ascending reticular activating system is an important enabling factor for the state of consciousness.  The ARAS also helps mediate transitions from relaxed wakefulness to periods of high attention. There is increased regional blood flow (presumably indicating an increased measure of neuronal activity) in the midbrain reticular formation (MRF) and thalamic intralaminar nuclei during tasks requiring increased alertness and attention.

The reticular formation is divided into three columns: raphe nuclei (median), gigantocellular reticular nuclei (medial zone), and parvocellular reticular nuclei (lateral zone). The raphe nuclei are the place of synthesis of the neurotransmitter serotonin, which plays an important role in mood regulation. The gigantocellular nuclei are involved in motor coordination. The parvocellular nuclei regulate exhalation.


Further References

Datta, S.. (1995). Neuronal activity in the peribrachial area: Relationship to behavioral state control. Neuroscience and Biobehavioral Reviews, 19(1), 67–84.

Plain numerical DOI: 10.1016/0149-7634(94)00043-Z
DOI URL
directSciHub download

Edlow, B. L., Takahashi, E., Wu, O., Benner, T., Dai, G., Bu, L., … Folkerth, R. D.. (2012). Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. Journal of Neuropathology and Experimental Neurology, 71(6), 531–546.

Plain numerical DOI: 10.1097/NEN.0b013e3182588293
DOI URL
directSciHub download

Englot, D. J., D’Haese, P. F., Konrad, P. E., Jacobs, M. L., Gore, J. C., Abou-Khalil, B. W., & Morgan, V. L.. (2017). Functional connectivity disturbances of the ascending reticular activating system in temporal lobe epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 88(11), 925–932.

Plain numerical DOI: 10.1136/jnnp-2017-315732
DOI URL
directSciHub download

Jones, B. E.. (2011). Neurobiology of waking and sleeping. Handbook of Clinical Neurology (Vol. 98)

Plain numerical DOI: 10.1016/B978-0-444-52006-7.00009-5
DOI URL
directSciHub download

Kinomura, S., Larsson, J., Gulyás, B., & Roland, P. E.. (1996). Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science, 271(5248), 512–515.

Plain numerical DOI: 10.1126/science.271.5248.512
DOI URL
directSciHub download

Lin, J. S.. (2000). Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Medicine Reviews

Plain numerical DOI: 10.1053/smrv.2000.0116
DOI URL
directSciHub download

McKinney, M.. (2005). Brain cholinergic vulnerability: Relevance to behavior and disease. Biochemical Pharmacology

Plain numerical DOI: 10.1016/j.bcp.2005.05.019
DOI URL
directSciHub download

Mesulam, M. M.. (2010). Attentional and confusional states. CONTINUUM Lifelong Learning in Neurology, 16(4), 128–139.

Plain numerical DOI: 10.1212/01.CON.0000368265.38415.35
DOI URL
directSciHub download

Newman, J.. (1995). Thalmic Contributions to Attention and Consciousness. Consciousness and Cognition

Plain numerical DOI: 10.1006/ccog.1995.1024
DOI URL
directSciHub download

Robbins, T. W.. (1997). Arousal systems and attentional processes. In Biological Psychology (Vol. 45, pp. 57–71)

Plain numerical DOI: 10.1016/S0301-0511(96)05222-2
DOI URL
directSciHub download

Siegel, J.. (2004). Brain mechanisms that control sleep and waking. Naturwissenschaften

Plain numerical DOI: 10.1007/s00114-004-0541-9
DOI URL
directSciHub download

Yeo, S. S., Chang, P. H., & Jang, S. H.. (2013). The Ascending Reticular Activating System from Pontine Reticular Formation to the Thalamus in the Human Brain. Frontiers in Human Neuroscience, 7

Plain numerical DOI: 10.3389/fnhum.2013.00416
DOI URL
directSciHub download

Young, G. B.. (2011). Impaired Consciousness and Herniation Syndromes. Neurologic Clinics

Plain numerical DOI: 10.1016/j.ncl.2011.07.008
DOI URL
directSciHub download

The “Straw man fallacy”

A straw man is a common form of argument and is an informal fallacy based on giving the impression of refuting an opponent’s argument, while actually refuting an argument that was not presented by that opponent. One who engages in this fallacy is said to be “attacking a straw man.”


Further References

Eemeren, F. H. Van, Amsterdam, F. V., & Walton, D.. (1996). The straw man fallacy. Logic and Argumentation

Plain numerical DOI: 10.1017/CBO9781139600187
DOI URL
directSciHub download

Talisse, R., & Aikin, S. F.. (2006). Two forms of the Straw Man. Argumentation

Plain numerical DOI: 10.1007/s10503-006-9017-8
DOI URL
directSciHub download

Lewiński, M.. (2011). Towards a Critique-Friendly Approach to the Straw Man Fallacy Evaluation. Argumentation

Plain numerical DOI: 10.1007/s10503-011-9227-6
DOI URL
directSciHub download

Lewiński, M., & Oswald, S.. (2013). When and how do we deal with straw men? A normative and cognitive pragmatic account. Journal of Pragmatics

Plain numerical DOI: 10.1016/j.pragma.2013.05.001
DOI URL
directSciHub download

Ika, L. A.. (2018). Beneficial or Detrimental Ignorance: The Straw Man Fallacy of Flyvbjerg’s Test of Hirschman’s Hiding Hand. World Development

Plain numerical DOI: 10.1016/j.worlddev.2017.10.016
DOI URL
directSciHub download

Macagno, F., & Damele, G.. (2013). The dialogical force of implicit premises: Presumptions in enthymemes. Informal Logic

Plain numerical DOI: 10.22329/il.v33i3.3679
DOI URL
directSciHub download

Aldous Huxley – Brave new world