
In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges (one in each direction).
Interdisciplinary matrices
The interactions between disciplines can be geometrically conceptualised as a cross-polytope, viz., each discipline is a node in the polytope.
An n-dimensional cross-polytope (synonymously referred to as “orthoplex”) can be defined as the closed unit ball in the ℓ1-norm on Rn:
but see en.wikipedia.org/wiki/Cross-polytope
Generically speaking, each set of k+1 orthogonal vertices corresponds to a distinct k-dimensional component which contains them. The number of k-dimensional components (vertices, edges, faces, …, facets) in an n-dimensional cross-polytope is given by the following equation:
Typesetting in
and MathJaxTM
\documentclass{article} \usepackage{tikz} \usetikzlibrary[topaths] % A counter, since TikZ is not clever enough (yet) to handle % arbitrary angle systems. \newcount\mycount \begin{document} \begin{tikzpicture}[transform shape] %the multiplication with floats is not possible. Thus I split the loop in two. \foreach \number in {1,...,8}{ % Computer angle: \mycount=\number \advance\mycount by -1 \multiply\mycount by 45 \advance\mycount by 0 \node[draw,circle,inner sep=0.25cm] (N-\number) at (\the\mycount:5.4cm) {}; } \foreach \number in {9,...,16}{ % Computer angle: \mycount=\number \advance\mycount by -1 \multiply\mycount by 45 \advance\mycount by 22.5 \node[draw,circle,inner sep=0.25cm] (N-\number) at (\the\mycount:5.4cm) {}; } \foreach \number in {1,...,15}{ \mycount=\number \advance\mycount by 1 \foreach \numbera in {\the\mycount,...,16}{ \path (N-\number) edge[->,bend right=3] (N-\numbera) edge[<-,bend left=3] (N-\numbera); } } \end{tikzpicture} \end{document} % A complete graph % Author: Quintin Jean-Noël % http://moais.imag.fr/membres/jean-noel.quintin/
#library(devtools) #install_github("schloerke/geozoo") #install.packages("geozoo") cross.polytope(p = 16)
Arguments
p
= dimension of object
Value
- points
- location of points
- edges
- edges of the object
see also schloerke.com/geozoo/cube/
References
Plain numerical DOI: 10.1021/acs.joc.6b02599
DOI URL
directSciHub download
Show/hide publication abstract
Knuth, Donald E. (2013), “Two thousand years of combinatorics”, in Wilson, Robin; Watkins, John J., Combinatorics: Ancient and Modern, Oxford University Press, pp. 7–37, ISBN 0191630624.
Plain numerical DOI: 10.1002/bdrc.20196
DOI URL
directSciHub download
Show/hide publication abstract
Show/hide publication abstract
Plain numerical DOI: 10.1111/j.1462-2920.2009.01995.x
DOI URL
directSciHub download
Show/hide publication abstract
ec3db80b21f51c3e815b410cee45449efe76e7d11bb6104490f2c9_640[1]
iur[1]
Mausfeld_Warum schweigen die Laemmer_Buch-Cover
dd
firstPage-S0007125000087808a[1]
chain-2364830_1920
ec36b30f2af51c3e815b410cee45449efe76e7d01cb2194992f7c7_640[1]
e833b00d29f41c3e815b410cee45449efe76e7d11bb7164096f0c1_640[1]
Screenshot 2021-07-04 at 23-12-54 Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere Consequences fo[...]
eb37b60c28f2083ecd0b4401ef444f94eb6ae3d01db3174696f4c379_640[1]
ef31b1062ef41c3e815b410cee45449efe76e7d11ab8174695f8c1_640[1]
cellular-2026427_960_720[1]
eb34b30820f6083ecd0b4401ef444f94eb6ae3d01db2144795f9c070_640[1]
601px-Nucleus_accumbens_sag
iu[3]
network topology
1024px-Blausen_0614_LimbicSystem[1]
corona-5002341_1920
MAU-MAU[1]
iu[5]
clause-67401__340[1]
pumpkin-2943368_960_720[1]
F1.large
9780691162423_0[1]
e837b80929f5063ecd0b4401ef444f94eb6ae3d01db3164093f0c971_640[1]
Television
nano
ea34b70928f11c3e815b410cee45449efe76e7d11bb6114291f7c7_640[1]
gas-mask-4473648_1280
Identity, Group
9780691162423_0[1]
francis galton
Gandhi_spinning[1]
Red_herring[1]
e83cb4082ff0013ecd0b4401ef444f94eb6ae3d01db2184695f0c07f_640[1]
rr
Worldview
422px-Stasi_richtlinie1_76[1]
ed35b70a28fc093ecd0b4401ef444f94eb6ae3d01cb5134890f9c67b_640[1]
ed30b90c2ff61c3e815b410cee45449efe76e7d11bb6134497f3c3_640[1]
ellul
noam-chomsky[1]
OUO2BRPDLVCOFBLQNXDXSAZANM[1]
Mausfeld_Warum schweigen die Laemmer_Buch-Cover
noam-chomsky[1]
chain-2364830_1920
300px-Gray726-Brodman-prefrontal.svg[1]
clockwork-4068582_1920
ee36b8072ff61c3e815b410cee45449efe76e7d01cb0194296f6c3_640[1]
ed3cb80b20f51c3e815b410cee45449efe76e7d11bb613449df7c6_640[1]
iu[1]
eb34b40b2ff7023ecd0b4401ef444f94eb6ae3d01cb4164292f6c37c_640[1]
mikado-1013878_1920
e835b00c2df6013ecd0b4401ef444f94eb6ae3d01db3164094f0c971_640[1]
ec3cb90f2bf21c3e815b410cee45449efe76e7d11bb6134493f0c0_640[1]
osho
e83db70829fc013ecd0b4401ef444f94eb6ae3d01db3164390f7c37f_640[1]
moon-1527501_1920
free-dove
e034b80d28f61c3e815b410cee45449efe76e7d11bb6134693f3c3_640[1]
elephant-2380009_960_720[1]
neuralink
eb32b70e21f51c3e815b410cee45449efe76e7d01bb6124490f7c2_640[1]
e834b70f29f7023ecd0b4401ef444f94eb6ae3d01db316419df9c579_640[1]
woman-2098098_960_720[1]
ea34b30b2ff51c3e815b410cee45449efe76e7d11bb5184695f9c4_640[1]
e834b70f29f7033ecd0b4401ef444f94eb6ae3d01db316419cf1c97f_640[1]
e832b3072cf0093ecd0b4401ef444f94eb6ae3d01db2144493f7c17d_640[1]
eb32b70f29f01c3e815b410cee45449efe76e7d11bb6114596f6c2_640[1]
chess-1483735_960_720[1]
cranium-2099129_960_720[1]
background-3857771_1920
hqdefault[1]
mullis
iur[1]
iu[4]
d
ea30b70a2ef2063ecd0b4401ef444f94eb6ae3d01db316439df2c878_640[1]
Entertainment
e837b00f28f4003ecd0b4401ef444f94eb6ae3d01db316419df5c37e_640[1]
ec34b70d2ffc1c3e815b410cee45449efe76e7d01db2114692f7c7_640[1]
5gggggg
eb36b70c2ff1013ecd0b4401ef444f94eb6ae3d01db3154994f4c370_640[1]
kant
eb3db90628f0013ecd0b4401ef444f94eb6ae3d01cb3164290f3c371_640[1]
800px-David_Hume
1280px-Hormesis_dose_response_graph.svg
iu[5]
eb34b00c28fd033ecd0b4401ef444f94eb6ae3d01db316439df8c27d_640[1]
iu[1]dd
hail hydra
ea32b00b28f5043ecd0b4401ef444f94eb6ae3d01cb5134890f6c870_640[1]
Intelligent search function
More results...
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
(CC) 2016—2019 | #Sitemap | #Sitemap | §Dataprotection according to GDPR |
This project was funded by the EU Marie Curie Initial Training Network FP7-PEOPLE-2013-ITN-604764
→ Primary goals of research and innovation policy as defined by the European Comission: Open Innovation, Open Science, Open to the World.
Legal disclaimer: The interdisciplinary Marie Curie CogNovo program has been intentionally designed by the European Union and the University of Plymouth (United Kingdom) to discuss and disseminate a wide view on a diverse spectrum of topics including psychology, neuroscience, current affairs, basic science, humanities, and the arts, inter alia. Note that the views and opinions expressed on this website do not necessarily represent the opinions of any of the institutions mentioned on this website and belong exclusively to author. The CogNovo program explicitly emphasises cognitive and social innovation, the generation of new ideas and perspectives, and the probing of boundaries, but see https://www.cognovo.eu/about/
Leave a Reply